Skip to Content
MilliporeSigma
  • Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

Olfactory Impact of Higher Alcohols on Red Wine Fruity Ester Aroma Expression in Model Solution.

Journal of agricultural and food chemistry (2015-11-04)
Margaux Cameleyre, Georgia Lytra, Sophie Tempere, Jean-Christophe Barbe
ABSTRACT

This study focused on the impact of five higher alcohols on the perception of fruity aroma in red wines. Various aromatic reconstitutions were prepared, consisting of 13 ethyl esters and acetates and 5 higher alcohols, all at the average concentrations found in red wine. These aromatic reconstitutions were prepared in several matrices. Sensory analysis revealed the interesting behavior of certain compounds among the five higher alcohols following their individual addition or omission. The "olfactory threshold" of the fruity pool was evaluated in several matrices: dilute alcohol solution, dilute alcohol solution containing 3-methylbutan-1-ol or butan-1-ol individually, and dilute alcohol solution containing the mixture of five higher alcohols, blended together at various concentrations. The presence of 3-methylbutan-1-ol or butan-1-ol alone led to a significant decrease in the "olfactory threshold" of the fruity reconstitution, whereas the mixture of alcohols raised the olfactory threshold. Sensory profiles highlighted changes in the perception of fruity nuances in the presence of the mixture of higher alcohols, with specific perceptive interactions, including a relevant masking effect on fresh- and jammy-fruit notes of the fruity mixture in both dilute alcohol solution and dearomatized red wine matrices. When either 3-methylbutan-1-ol or butan-1-ol was added to the fruity reconstitution in dilute alcohol solution, an enhancement of butyric notes was reported with 3-methylbutan-1-ol and fresh- and jammy-fruit with butan-1-ol. This study, the first to focus on the impact of higher alcohols on fruity aromatic expression, revealed that these compounds participate, both quantitatively and qualitatively, in masking fruity aroma perception in a model fruity wine mixture.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethanol, ≥99.5%
Sigma-Aldrich
Phenol, ≥99.0%
Sigma-Aldrich
Ethanol, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, SAJ super special grade
Sigma-Aldrich
Ethanol, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for absorption spectrum analysis
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for HPLC
Sigma-Aldrich
Ethanol, ≥99.5%, suitable for fluorescence
Sigma-Aldrich
Phenol, ≥99.0%
Sigma-Aldrich
Phenol, SAJ first grade, ≥98.0%
Sigma-Aldrich
Phenol, JIS special grade, ≥99.0%
Supelco
Phenol solution, certified reference material, 500 μg/mL in methanol
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, anhydrous, ≥99.5%
Supelco
Phenol solution, 5000 μg/mL in methanol, certified reference material
Supelco
Isobutyric acid, analytical standard
Sigma-Aldrich
Phenol, puriss., ≥99.5% (GC), meets analytical specification of Ph. Eur., BP, USP, crystalline (detached)
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Phenol, puriss., meets analytical specification of Ph. Eur., BP, USP, 99.5-100.5% (GC)
Sigma-Aldrich
Phenol, puriss. p.a., ACS reagent, reag. Ph. Eur., 99.0-100.5%
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, TE-saturated, ~73% (T)
Sigma-Aldrich
Isoamyl acetate, ≥95%, FCC, FG
Sigma-Aldrich
Isovaleric acid, 99%
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Isobutyric acid, natural, ≥99%, FCC, FG
Sigma-Aldrich
Isobutyric acid, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Isoamyl acetate, natural, ≥97%, FCC, FG
Sigma-Aldrich
Phenol, ≥99%
Sigma-Aldrich
Isovaleric acid, ≥99%, FCC, FG
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, meets USP testing specifications