Skip to Content
Merck
  • Enhanced electrospray ionization mass spectrometric detection of hexamethylene triperoxide diamine (HMTD) after oxidation to tetramethylene diperoxide diamine dialdehyde (TMDDD).

Enhanced electrospray ionization mass spectrometric detection of hexamethylene triperoxide diamine (HMTD) after oxidation to tetramethylene diperoxide diamine dialdehyde (TMDDD).

Rapid communications in mass spectrometry : RCM (2015-11-03)
Tomasz Krawczyk
ABSTRACT

Hexamethylene triperoxide diamine (HMTD) is one of the peroxide-based explosives that are difficult to detect using standard analytical methodologies. It was analyzed by electrospray ionization mass spectrometry (ESI-MS) on a UPLC-TOF instrument. Alkali metal salts were used to promote the formation of ions. In the full scan positive ion mode a 3 ng (13 pmol) limit of detection was achieved if [HMTD + Me](+) ions (Me = Li, Na, K) were detected. It was found that HMTD easily undergoes oxidation to tetramethylene diperoxide diamine dialdehyde (TMDDD) in the source as well as in the samples. TMDDD can be detected as [TMDDD + Me](+) ions, but better ionization efficiency leads to the detection limit of TMDDD at the 2 pg (0.01 pmol) level. In butyl acetate the yield of oxidation of HMTD to TMDDD reaches 25% within 20 min at 120 °C, which offers a simple way of improving the detection limit of HMTD by two orders of magnitude. A simple procedure of detection of HMTD that matches the most sensitive methods available was developed. It uses standard equipment available in many laboratories. It was shown that the frequently reported [HMTD-H](+) cation observed by various authors was in fact a misinterpretation of the results, and should be attributed to [TMDDD + H](+).

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, ≥99.8%, suitable for HPLC
Supelco
Acetonitrile, HPLC grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, ≥99.5%, ACS reagent
Sigma-Aldrich
Lithium acetate dihydrate, BioUltra, ≥99.0% (anhydrous basis)
Sigma-Aldrich
5α-Androstan-17β-ol-3-one, ≥97.5%
Sigma-Aldrich
Lithium acetate dihydrate, BioXtra
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile, for chromatography
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 1000
Sigma-Aldrich
Acetonitrile, for residue analysis, JIS 5000
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Lithium acetate dihydrate, reagent grade
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetic acid solution, 1 M, 1 N
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
Ammonium acetate solution, 50 % (w/v)
Sigma-Aldrich
Acetic acid, ≥99.7%, suitable for amino acid analysis
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C