Skip to Content
MilliporeSigma
  • Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

Characterization of Volatile Flavor Compounds in Chinese Rice Wine Fermented from Enzymatic Extruded Rice.

Journal of food science (2015-06-20)
Enbo Xu, Jie Long, Zhengzong Wu, Hongyan Li, Fang Wang, Xueming Xu, Zhengyu Jin, Aiquan Jiao
ABSTRACT

Enzymatic extrusion, instead of traditional steam cooking, to treat rice is an efficient and alternative pretreatment for Chinese rice wine fermentation. In order to determine the formation of volatiles in enzymatic extrusion-processed rice wine (EE), and to confirm its characteristic flavor compounds, headspace solid-phase micro-extraction followed by GC-MS was used. A total of 66 volatile compounds were identified in EE. During fermentation, most volatiles generated from enzymatic extruded rice had the similar trends with those from steam-cooked rice, but the differences in the concentration of volatiles indicated a changed balance of flavors release caused by enzymatic extrusion. Besides, the concentrations and sorts of volatiles in EEs fermented from different rice particle sizes, were not dramatically different. By principal component analysis, EE could be distinctly separated from other traditional Chinese rice wines according to its characteristic volatiles, namely, 2-heptanol, 1-octen-3-ol, ethyl 4-hydroxybenzoate, methylpentyl 2-propenoate, γ-hexalactone, and 4-vinylguaiacol. Enzymatic extrusion liquefaction has been a popular thermal treatment for cereals, and gradually being applied in fermentation and liquor-making industry all over the world. The characterization of volatile flavor compounds in Chinese rice wine processed by enzymatic extrusion liquefaction pretreatment, might be made use not only for a better understanding of this new-type rice wine, but for the further utilization of enzymatic extrusion in other wine or alcohol production as well.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Propanol, JIS special grade
Sigma-Aldrich
1-Butanol, suitable for HPLC
Sigma-Aldrich
3-Methyl-1-butanol, SAJ first grade, ≥96.0%
Supelco
SPME fiber assembly Carboxen/Polydimethylsiloxane (CAR/PDMS), df 85 μm(CAR/PDMS, for use with autosampler, needle size 23 ga, metal alloy fiber
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), for use with autosampler, needle size 23 ga, metal alloy fiber, fiber L 2 cm
Supelco
SPME fiber assembly Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS), for use with autosampler, needle size 23 ga, metal alloy fiber, fiber L 1 cm
Supelco
SPME fiber assembly, Carbowax-Polyethylene Glycol (PEG) Coating, needle size 23 ga, df 60 μm(PEG, for use with autosampler
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Guaiacol, SAJ first grade, ≥98.0%
Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
1-Butanol, JIS special grade, ≥99.0%
Sigma-Aldrich
Benzaldehyde, SAJ special grade, ≥98.0%
Sigma-Aldrich
2-Methyl-1-propanol, JIS special grade, ≥99.0%
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
Acetic acid, SAJ first grade, ≥99.0%
Sigma-Aldrich
2-Methyl-1-propanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Ethyl hexanoate, SAJ special grade, ≥99.0%
Sigma-Aldrich
3-Methyl-1-butanol, JIS special grade, ≥98.0%
Sigma-Aldrich
Acetic acid, ≥99.7%, suitable for amino acid analysis
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Furfural, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 1 M
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Acetic acid, ≥99.7%
Sigma-Aldrich
1-Butanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetic acid, JIS special grade, ≥99.7%
Sigma-Aldrich
1-Octanol, JIS special grade, ≥98.0%
Sigma-Aldrich
Acetic acid, 99.5-100.0%
Sigma-Aldrich
1-Octanol, SAJ first grade, ≥75.0%