Skip to Content
MilliporeSigma
  • Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c.

Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c.

Biophysical journal (2015-11-05)
Abhishek Mandal, Cody L Hoop, Maria DeLucia, Ravindra Kodali, Valerian E Kagan, Jinwoo Ahn, Patrick C A van der Wel
ABSTRACT

The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly (13)C,(15)N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Hydroxyapatite, nanopowder, <200 nm particle size (BET), contains 5 wt. % silica as dopant, synthetic
Sigma-Aldrich
Hydroxyapatite, nanoparticles, dispersion, 10 wt. % in H2O, <200 nm particle size (BET)
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Sigma-Aldrich
Hydroxyapatite, synthetic, 99.8% trace metals basis (excludes Mg)
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Hydroxyapatite, reagent grade, powder, synthetic
Sigma-Aldrich
Phosphoric acid solution, NMR reference standard, 85% in D2O (99.9 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Allyl methyl sulfone, 96%
Sigma-Aldrich
Hydroxyapatite, puriss., meets analytical specification of Ph. Eur., BP, FCC, E341, ≥90% (calculated on glowed substance)
Sigma-Aldrich
Hydroxyapatite, purum p.a., ≥90% (as Ca3(PO4)2, KT)
Sigma-Aldrich
Hydroxyapatite, nanopowder, <200 nm particle size (BET), ≥97%, synthetic
Sigma-Aldrich
Calcium phosphate tribasic, 34.0-40.0% Ca basis
Sigma-Aldrich
Calcium phosphate tribasic, suitable for plant cell culture, BioReagent, powder
Sigma-Aldrich
Phosphoric acid-16O4 solution, 70 wt. % in D2O, 99.9 atom % 16O
Sigma-Aldrich
Phosphoric acid, BioUltra, ≥85% (T)
Sigma-Aldrich
Phosphoric acid, ≥85 wt. % in H2O, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid, crystalline, ≥99.999% trace metals basis
Sigma-Aldrich
Phosphoric acid, 85 wt. % in H2O, 99.99% trace metals basis
Sigma-Aldrich
Phosphoric acid, BioReagent, suitable for insect cell culture, 85%
Sigma-Aldrich
Phosphoric acid, puriss., meets analytical specification of Ph. Eur., BP, NF, FCC, 85.0-88.0%
Sigma-Aldrich
Phosphoric acid, puriss. p.a., crystallized, ≥99.0% (T)
Sigma-Aldrich
Phosphoric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥85%
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O
Sigma-Aldrich
Phosphoric acid, ACS reagent, ≥85 wt. % in H2O