Skip to Content
MilliporeSigma
  • Degradation of cyanotoxin cylindrospermopsin by TiO2-assisted ozonation in water.

Degradation of cyanotoxin cylindrospermopsin by TiO2-assisted ozonation in water.

Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering (2015-07-21)
Chih-Chao Wu, Winn-Jung Huang, Bo-Hao Ji
ABSTRACT

The stable tricyclic structure of the cylindrospermopsin (CYN), a cynotoxin, has presented several challenges to water treatment facilities, as conventional treatment methods have a limited ability to remove it from water. This study examines the effectiveness of titanium dioxide (TiO2) in catalytic ozonation for degrading CYN. The chemical kinetics of the reactions of ozone (O3) and hydroxyl radicals (OH(•)) with CYN were determined. The results reveal that TiO2 significantly increases the rate of degradation of CYN by increasing the rate of production of hydroxyl radicals (OH(•)) by initiating the decomposition of O3 on the surface of the catalyst. At a pH of 7 with 1.0 mg L(-1) O3 and 500 mg L(-1) TiO2; the pseudo-first-order ozone decomposition rate constant (k(D)) increased from 3.04 × 10(-3) to 16.53 × 10(-3) s(-1) and the ratio of OH(•) to O3 concentrations (R(ct)) increased from 1.87 × 10(-8) to 126.4 × 10(-8). The calculated second-order rate constant (k(overall)) of the reaction of CYN with O3 and OH(•) was 3.22 M(-1)s(-1) without TiO2. However, the greatest improvement in k(overall) in this study was observed using 500 mg TiO2 L(-1), which increased koverall by a factor of five. TiO2-catalyzed ozonation is an efficient method of oxidation that reduces the toxic activity of CYN. The results of a Microtox test concerning the toxic activity of CYN during oxidation reveal that catalytic ozonation may either increase or reduce the toxicity of CYN toward test samples. The toxic effects of CYN on the samples are greatly influenced by the TiO2 dosage and reaction time, possibly yielding by-products that may change the mutagenic properties of CYN. Three water samples from a eutrophic lake in Taiwan were examined to evaluate the effect of dissolved organic carbon (DOC) and alkalinity on the oxidation of CYN. DOC had the greatest effect on the oxidation of CYN in the ozonation of eutrophic water. Overall, the degree of CYN oxidation depended on the rate constant of the reaction with ozone and the consumption of ozone by the natural water matrix.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
1-Butanol, suitable for HPLC
Sigma-Aldrich
Styrene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
1-Butanol, SAJ first grade, ≥99.0%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
1-Butanol, JIS special grade, ≥99.0%
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
1-Butanol, for molecular biology, ≥99%
Sigma-Aldrich
Divinylbenzene, technical grade, 55%
Sigma-Aldrich
Styrene, ReagentPlus®, contains 4-tert-butylcatechol as stabilizer, ≥99%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Supelco
1-Butanol, suitable for HPLC, 99.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Divinylbenzene, technical grade, 80%
Sigma-Aldrich
1-Butanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, for residue analysis, JIS 5000
Sigma-Aldrich
Acetonitrile, for chromatography
Sigma-Aldrich
Trifluoroacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, SAJ first grade, ≥99.0%