- Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Preinduced With Neurotrophin-3 and Retinoic Acid Into Oligodendrocyte-Like Cells in Demyelinated Spinal Cord of Rats.
Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Preinduced With Neurotrophin-3 and Retinoic Acid Into Oligodendrocyte-Like Cells in Demyelinated Spinal Cord of Rats.
Transplantation of bone marrow mesenchymal stem cells (MSCs) promotes functional recovery in multiple sclerosis (MS) patients and in a murine model of MS. However, there is only a modicum of information on differentiation of grafted MSCs into oligodendrocyte-like cells in MS. The purpose of this study was to transplant neurotrophin-3 (NT-3) and retinoic acid (RA) preinduced MSCs (NR-MSCs) into a demyelinated spinal cord induced by ethidium bromide and to investigate whether EA treatment could promote NT-3 secretion in the demyelinated spinal cord. We also sought to determine whether increased NT-3 could further enhance NR-MSCs overexpressing the tyrosine receptor kinase C (TrkC) to differentiate into more oligodendrocyte-like cells, resulting in increased remyelination and nerve conduction in the spinal cord. Our results showed that NT-3 and RA increased transcription of TrkC mRNA in cultured MSCs. EA increased NT-3 levels and promoted differentiation of oligodendrocyte-like cells from grafted NR-MSCs in the demyelinated spinal cord. There was evidence of myelin formation by grafted NR-MSCs. In addition, NR-MSC transplantation combined with EA treatment (the NR-MSCs + EA group) reduced demyelination and promoted remyelination. Furthermore, the conduction of cortical motor-evoked potentials has improved compared to controls. Together, our data suggest that preinduced MSC transplantation combined with EA treatment not only increased MSC differentiation into oligodendrocyte-like cells forming myelin sheaths, but also promoted remyelination and functional improvement of nerve conduction in the demyelinated spinal cord.