コンテンツへスキップ
Merck
  • Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease.

Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease.

Neuron (2020-11-26)
Minghui Wang, Aiqun Li, Michiko Sekiya, Noam D Beckmann, Xiuming Quan, Nadine Schrode, Michael B Fernando, Alex Yu, Li Zhu, Jiqing Cao, Liwei Lyu, Emrin Horgusluoglu, Qian Wang, Lei Guo, Yuan-Shuo Wang, Ryan Neff, Won-Min Song, Erming Wang, Qi Shen, Xianxiao Zhou, Chen Ming, Seok-Man Ho, Sezen Vatansever, H Ümit Kaniskan, Jian Jin, Ming-Ming Zhou, Kanae Ando, Lap Ho, Paul A Slesinger, Zhenyu Yue, Jun Zhu, Pavel Katsel, Sam Gandy, Michelle E Ehrlich, Valentina Fossati, Scott Noggle, Dongming Cai, Vahram Haroutunian, Koichi M Iijima, Eric Schadt, Kristen J Brennand, Bin Zhang
要旨

To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
ジメチルスルホキシド, ReagentPlus®, ≥99.5%
Sigma-Aldrich
ウシ胎児血清, USA origin, Heat Inactivated, sterile-filtered, suitable for cell culture, suitable for insect cell culture, suitable for hybridoma
Sigma-Aldrich
N6,2′-O-ジブチリルアデノシン3′,5′-サイクリック一リン酸 ナトリウム塩, ≥96% (HPLC), powder
Sigma-Aldrich
モノクロナール抗α-チューブリン マウス宿主抗体, clone DM1A, ascites fluid
Sigma-Aldrich
マイヤーヘマトキシリン溶液′
Sigma-Aldrich
L-アスコルビン酸, reagent grade
Sigma-Aldrich
SAHA, ≥98% (HPLC)
Sigma-Aldrich
Anti-Tau Antibody, clone Tau 12, clone Tau 12, from mouse
Supelco
1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール, for GC derivatization, LiChropur, ≥99.8%
Sigma-Aldrich
HDAC Inhibitor XXII, NCH51, The HDAC Inhibitor XXII, NCH51, also referenced under CAS 848354-66-5, controls the biological activity of HDAC. This small molecule/inhibitor is primarily used for Cell Structure applications.