콘텐츠로 건너뛰기
Merck
모든 사진(3)

주요 문서

W262701

Sigma-Aldrich

Levulinic acid

greener alternative

natural, 99%, FG

동의어(들):

4-Oxopentanoic acid, 4-Oxovaleric acid

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
CH3COCH2CH2COOH
CAS Number:
Molecular Weight:
116.12
FEMA Number:
2627
Beilstein:
506796
EC Number:
유럽평의회 번호:
23
MDL number:
UNSPSC 코드:
12164502
PubChem Substance ID:
플래비스(Flavis) 번호:
8.023
NACRES:
NA.21

Grade

FG
Fragrance grade
Halal
Kosher
natural

Quality Level

Agency

follows IFRA guidelines
meets purity specifications of JECFA

규정 준수

EU Regulation 1223/2009
EU Regulation 1334/2008 & 178/2002

vapor pressure

1 mmHg ( 102 °C)

분석

99%

환경친화적 대안 제품 특성

Less Hazardous Chemical Syntheses
Use of Renewable Feedstocks
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

refractive index

n20/D 1.442

bp

245-246 °C (lit.)

mp

30-33 °C (lit.)

density

1.134 g/mL at 25 °C (lit.)

응용 분야

flavors and fragrances

문건

see Safety & Documentation for available documents

식품 알레르기항원

no known allergens

향수 알레르기항원

no known allergens

환경친화적 대안 카테고리

감각 수용성의

caramel; creamy; acidic; sweet; vanilla

SMILES string

CC(=O)CCC(O)=O

InChI

1S/C5H8O3/c1-4(6)2-3-5(7)8/h2-3H2,1H3,(H,7,8)

InChI key

JOOXCMJARBKPKM-UHFFFAOYSA-N

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Levulinic acid, an organic acid, is mainly used as a cigarette additive.
We are committed to bringing you Greener Alternative Products, which adhere to one of the four categories of Greener Alternatives . This product is a Biobased products, showing key improvements in Green Chemistry Principles “Less Hazardous Chemical Syntheses” and “Use of Renewable Feedstock”.

애플리케이션


  • Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts.: Levulinic acid is used in conjunction with carboxymethyl cellulose to produce water-soluble catalysts. This application demonstrates the acid′s versatility in catalyst synthesis, enhancing the solubility and functionality of the resulting products (Paganelli et al., 2024).

  • Nanocavity in hollow sandwiched catalysts as substrate regulator for boosting hydrodeoxygenation of biomass-derived carbonyl compounds.: This research explores the use of levulinic acid in biomass conversion processes. The study highlights the acid′s role in enhancing hydrodeoxygenation reactions, contributing to more efficient biofuel production (Zheng et al., 2024).

  • Mechanism of CO(2) in promoting the hydrogenation of levulinic acid to γ-valerolactone catalyzed by RuCl(3) in aqueous solution.: This paper investigates the catalytic hydrogenation of levulinic acid to γ-valerolactone. The findings provide insights into the role of CO2 in enhancing reaction efficiency, offering valuable information for industrial applications (Min et al., 2024).

  • Integrated biorefinery approach for utilization of wood waste into levulinic acid and 2-Phenylethanol production under mild treatment conditions.: This study presents a biorefinery approach to convert wood waste into valuable chemicals, including levulinic acid. The process demonstrates the potential for sustainable production of levulinic acid and its derivatives from renewable resources (Pachapur et al., 2024).


픽토그램

CorrosionExclamation mark

신호어

Danger

유해 및 위험 성명서

Hazard Classifications

Acute Tox. 4 Oral - Eye Dam. 1 - Skin Sens. 1

Storage Class Code

13 - Non Combustible Solids

WGK

WGK 2

Flash Point (°F)

208.4 °F - closed cup

Flash Point (°C)

98 °C - closed cup


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Suheyla Kocaman
International journal of phytoremediation, 22(8), 885-895 (2020-03-11)
This study has developed an innovative and environmentally friendly approach for the removal of methylene blue (MB) dye by natural shells (NShs) chemically modified with levulinic acid (LA). Almond shell (ASh), walnut shell (WSh), and apricot kernel shell (AKSh) were
Sofia Tallarico et al.
Scientific reports, 9(1), 18858-18858 (2019-12-13)
Cellulose is the main component of lignocellulosic biomass. Its direct chemocatalytic conversion into lactic acid (LA), a powerful biobased chemical platform, represents an important, and more easily scalable alternative to the fermentative way. In this paper, we present the selective
Direct hydrocyclization of biomass-derived levulinic acid to 2-methyltetrahydrofuran over nanocomposite copper/silica catalysts.
Pravin P Upare et al.
ChemSusChem, 4(12), 1749-1752 (2011-11-25)
Pierre Gallezot
Chemical Society reviews, 41(4), 1538-1558 (2011-09-13)
This critical review provides a survey illustrated by recent references of different strategies to achieve a sustainable conversion of biomass to bioproducts. Because of the huge number of chemical products that can be potentially manufactured, a selection of starting materials
Nazlina Ya'aini et al.
Bioresource technology, 116, 58-65 (2012-05-23)
Conversion of glucose, empty fruit bunch (efb) and kenaf to levulinic acid over a new hybrid catalyst has been investigated in this study. The characterization and catalytic performance results revealed that the physico-chemical properties of the new hybrid catalyst comprised

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.