콘텐츠로 건너뛰기
Merck
모든 사진(1)

문서

Q102

Sigma-Aldrich

(−)-Quinpirole hydrochloride

≥98% (HPLC), solid

동의어(들):

(–)-Quinpirole monohydrochloride, trans-(–)-(4aR)-4,4a,5,6,7,8,8a,9-Octahydro-5-propyl-1H-pyrazolo[3,4-g]quinoline monohydrochloride, LY-171,555

로그인조직 및 계약 가격 보기


About This Item

실험식(Hill 표기법):
C13H21N3 · HCl
CAS Number:
Molecular Weight:
255.79
MDL number:
UNSPSC 코드:
12352200
PubChem Substance ID:
NACRES:
NA.77

Quality Level

분석

≥98% (HPLC)

형태

solid

광학 활성

[α]25/D −124.5°, c = 0.4 in H2O(lit.)

저장 조건

desiccated

색상

white

solubility

0.1 M HCl: 23 mg/mL
H2O: 7.3 mg/mL

저장 온도

−20°C

SMILES string

Cl.[H][C@]12CCCN(CCC)[C@]1([H])Cc3c[nH]nc3C2

InChI

1S/C13H21N3.ClH/c1-2-5-16-6-3-4-10-7-12-11(8-13(10)16)9-14-15-12;/h9-10,13H,2-8H2,1H3,(H,14,15);1H/t10-,13-;/m1./s1

InChI key

HJHVRVJTYPKTHX-HTMVYDOJSA-N

유전자 정보

애플리케이션

(-)-Quinpirole hydrochloride has been used as a selective D2 dopamine (DA) receptor agonist in various experiments.

생화학적/생리학적 작용

Quinpirole is a dopamine agonist with high affinity for the D2 and D3 dopamine receptor subtypes. Specific [3H]quinpirole binding in rat brain was saturable, and dependent on temperature, membrane concentration, sodium concentration and guanine nucleotides. The putative D2 dopamine receptor agonist quinpirole (LY 171,555) is the most widely used D2 agonist in in vivo and in vitro studies. Quinpirole hydrochloride is an active enantiomer of (±)-quinpirole.Saturation analysis revealed high affinity binding characteristics (KD = 2.3 +/- 0.3 nM) which were confirmed by association-dissociation kinetics. The regional distribution of [3H]quinpirole binding sites roughly paralleled the distribution of [3H]spiperone binding sites, with greatest densities present in the striatum, nucleus accumbens and olfactory tubercles. A variety of drugs, most notably monoamine oxidase inhibitors (MAOls), inhibit the binding of [3H]quinpirole, but not [3H]spiperone or [3H](-)N-n-Propylnorapomorphine, in rat striatal membranes by a mechanism that does not appear to involve the enzymatic activity of MAO. Clinically antidepressant MAOIs exhibited selectivity between sites labeled by [3H]quinpirole and [3H]spiperone as did a number of structurally related propargylamines and N-acylethylenediamine derivatives and other drugs such as debrisoquin and phenylbiguanide. The MAOIs clorgyline and Ro 41-1049 were the most potent. MAOIs interact with a novel binding site that is labeled by [3H]quinpirole or that modulates [3H]quinpirole binding. This site may be associated with D2-like dopamine receptors.

법적 정보

Manufactured and sold with the permission of Eli Lilly and Company.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

개인 보호 장비

Eyeshields, Gloves, type N95 (US)


시험 성적서(COA)

제품의 로트/배치 번호를 입력하여 시험 성적서(COA)을 검색하십시오. 로트 및 배치 번호는 제품 라벨에 있는 ‘로트’ 또는 ‘배치’라는 용어 뒤에서 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Role of D2 dopamine receptors of the ventral pallidum in inhibitory avoidance learning
Lenard L, et al.
Behavioural Brain Research, 321, 99-105 (2017)
Hiroyoshi Inaba et al.
Neuropsychopharmacology reports, 41(3), 405-415 (2021-07-24)
A reduced mismatch negativity (MMN) response is a promising electrophysiological endophenotype of schizophrenia that reflects neurocognitive impairment. Dopamine dysfunction is associated with symptoms of schizophrenia. However, whether the dopamine system is involved in MMN impairment remains controversial. In this study
Laszlo Peczely et al.
The international journal of neuropsychopharmacology, 25(7), 590-599 (2022-03-30)
The ventral pallidum (VP) is a dopaminoceptive forebrain structure regulating the ventral tegmental area (VTA) dopaminergic population activity. We have recently demonstrated that in the VP, the D2-like dopamine (DA) receptor agonist quinpirole dose dependently facilitates memory consolidation in inhibitory
Role of ventral pallidal D2 dopamine receptors in the consolidation of spatial memory
Peczely L, et al.
Behavioural Brain Research, 313, 1-9 (2016)
Norman E Taylor et al.
Anesthesiology, 118(1), 30-39 (2012-12-12)
A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. In adult

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.