콘텐츠로 건너뛰기
Merck
  • Prilling as manufacturing technique for multiparticulate lipid/PEG fixed-dose combinations.

Prilling as manufacturing technique for multiparticulate lipid/PEG fixed-dose combinations.

European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2014-07-11)
A Vervaeck, T Monteyne, L Saerens, T De Beer, J P Remon, C Vervaet
초록

This study focused on the evaluation of prilling as a technique for the manufacturing of multiparticulate dosage forms. Prills, providing controlled and immediate drug release, were processed and finally combined in capsules yielding a fixed-dose combination. Metoprolol tartrate (MPT) and hydrochlorothiazide (HCT) were used as controlled and immediate release model drugs, respectively. These drugs were embedded in matrices composed of fatty acids and polyethylene glycol (PEG). In order to tailor drug release from the prills, the type of fatty acid, the PEG molecular weight and the fatty acid/PEG ratio were varied. To provide controlled drug release, MPT was embedded in matrices containing PEG and behenic acid. Using different PEG molecular weights (PEG 4000, 6000 and 10,000), MPT release could be tailored over a wide range. To obtain immediate release, HCT was incorporated in matrices composed of PEG and stearic acid. Since high amounts (at least 60%) of PEG were needed for acceptable immediate release, HCT release was independent on PEG molecular weight. Solid state characterization revealed that MPT crystallinity was decreased, while HCT was molecularly dispersed throughout the matrix. Drug release of both MPT and HCT prills was stable during storage. Compared to a fixed-dose reference, oral co-administration of the MPT and HCT prills to dogs yielded a similar bioavailability for the HCT prills, while the MPT prills resulted in a significant higher bioavailability.

MATERIALS
제품 번호
브랜드
제품 설명

Sigma-Aldrich
Potassium fluoride, ≥99.97% trace metals basis
Sigma-Aldrich
Potassium fluoride, BioUltra, ≥99.5% (F)
Sigma-Aldrich
Potassium fluoride, anhydrous, powder, ≥99.9% trace metals basis
Lysine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Supelco
Methanol, analytical standard
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, puriss., meets analytical specification of Ph Eur, ≥99.7% (GC)
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
USP
Methyl alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Hydrochlorothiazide, meets USP testing specifications
Sigma-Aldrich
Hydrochlorothiazide, crystalline
Sigma-Aldrich
Stearic acid, Grade I, ≥98.5% (capillary GC)
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
Stearic acid, reagent grade, 95%
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard