All Photos(3)




Poly(allylamine hydrochloride)

average Mw ~17,500 (GPC vs. PEG std.)

Linear Formula:
[CH2CH(CH2NH2 · HCl)]n
CAS Number:
EC Number:
MDL number:
PubChem Substance ID:



Quality Level

mol wt

average Mw ~17,500 (GPC vs. PEG std.)

SMILES string




InChI key


Looking for similar products? Visit Product Comparison Guide

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
Poly(vinyl alcohol) Mw 9,000-10,000, 80% hydrolyzed



Poly(vinyl alcohol)

mol wt

average Mw ~17,500 (GPC vs. PEG std.)

mol wt

Mw 9,000-10,000

mol wt

average Mw 50,000

mol wt

Mn 1,000-2,000 (poly(acrylic acid)), Mn 27,000-31,000 (polystyrene), Mn 28,000-33,000 (total)

General description

Poly(allylamine hydrochloride) (PAH) is a water-soluble weak-base and a biodegradable polymer.


Poly(allylamine hydrochloride) can be used as a starting material to prepare:
  • Chitosan/PAH polymer blend films by solution casting technique. These films can be employed in injectable drug delivery systems and tissue generation.
  • Cross-linked amino-modified graphene oxide for the removal of Cr(IV) from aqueous solutions.
  • Polyelectrolyte multilayers(PEMs) by the layer-by-layer method. These PEMs can be used to prepare controlled drug delivery systems and coatings with controlled cell adhesion properties.
Used to make redox hydrogel-modified electrodes for measuring enzyme responses.

Features and Benefits

  • Excellent environmental stability
  • Water-soluble
  • Low cost


Exclamation mark

Signal Word


Hazard Statements

Hazard Classifications

Acute Tox. 4 Oral - Skin Sens. 1

Storage Class Code

11 - Combustible Solids



Flash Point(F)

Not applicable

Flash Point(C)

Not applicable

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (Example: T1503).


Product Number
Pack Size/Quantity

Additional examples:





enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

B Marzec et al.
Journal of structural biology, 208(2), 127-136 (2019-08-23)
Coccolithophores are marine phytoplankton that are among the most prolific calcifiers widespread in Earth's oceans, playing a crucial role in the carbon cycle and in the transport of organic matter to the deep sea. These organisms produce highly complex mineralized
Yiyao Liu et al.
Expert opinion on drug delivery, 9(10), 1197-1207 (2012-09-27)
Technologies to increase tissue vascularity are critically important to the fields of tissue engineering and cardiovascular medicine. Angiogenic factors, like VEGF, have been widely investigated to induce vascular endothelial cell proliferation and angiogenesis for establishing a vascular network. However, effective
L Minati et al.
International journal of pharmaceutics, 438(1-2), 45-52 (2012-09-11)
Gold nanoparticles functionalized with doxorubicin and stabilized with multilayers of degradable polyelectrolyte were allowed to age in aqueous medium in vitro in order to show the possibility of drug release in cellular environment. The chemico-physical characteristics of the nanoparticles are
Magdalena Oćwieja et al.
Langmuir : the ACS journal of surfaces and colloids, 29(11), 3546-3555 (2013-01-17)
Systematic studies of silver particle deposition kinetics under diffusion transport on poly(allylamine hydrochloride) (PAH) modified mica were carried out. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the deposition time and the ionic
Xin Gao et al.
International journal of nanomedicine, 7, 4037-4051 (2012-08-14)
We designed dual-functional nanoparticles for in vivo application using a modified electrostatic and covalent layer-by-layer assembly strategy to address the challenge of assessment and treatment of hormone-refractory prostate cancer. Core-shell nanoparticles were formulated by integrating three distinct functional components, ie


Layer-by-Layer (LbL) Assembly, A "Gentle Yet Flexible" Method Toward Functional Biomaterials

Recently, layer-by-layer (LbL) assembly has emerged as a versatile, gentle and, simple method for immobilization of functional molecules in an easily controllable thin film morphology.1,2 In this short review, we introduce recent advances in functional systems fabricated by using the mild, yet adaptable LbL technique.

Polyelectrolyte Multilayer Films and Membrane Functionalization

We present an article that discusses two applications in particular; first, using these layers as polyelectrolyte membranes to control permeability.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service