Skip to Content
MilliporeSigma
All Photos(2)

Documents

719935

Sigma-Aldrich

Resomer® R 203 S, Poly(D,L-lactide)

ester terminated, Mw 18,000-28,000

Sign Into View Organizational & Contract Pricing

Synonym(s):
Lactide polymer, PDLLA
Linear Formula:
[C3H4O2]x[C2H2O2]y
CAS Number:
UNSPSC Code:
12162002
NACRES:
NA.23

Quality Level

form

amorphous

mol wt

Mw 18,000-28,000

degradation timeframe

<6 months

viscosity

0.25-0.35 dL/g, 0.1 % (w/v) in chloroform(25 °C, Ubbelohde) (size 0c glass capillary viscometer)

transition temp

Tg 46-50 °C

storage temp.

2-8°C

SMILES string

[H]OC(C(OC(C(O[R])=O)C)=O)C

InChI

1S/C6H8O4.C4H4O4/c1-3-5(7)10-4(2)6(8)9-3;5-3-1-7-4(6)2-8-3/h3-4H,1-2H3;1-2H2

InChI key

LCSKNASZPVZHEG-UHFFFAOYSA-N

Related Categories

General description

Ester terminated Poly(D,L-lactide) (PDLLA, RESOMER® ) is a copolymer of L and D-lactic acid and (or L and D lactide). The structure is highly irregular and amorphous. RESOMER® polymers are bioresorbable aliphatic polyesters comprised of a range of different ratios of lactide and glycolide monomers, PLA stereochemistries, and end-group functionalization.

Application

This biodegradable polyester is useful for the controlled release of drugs both in vitro and in vivo.

Legal Information

Product of Evonik
RADIANT is a registered trademark of Bio-Rad Laboratories, Inc.
RESOMER is a registered trademark of Evonik Rohm GmbH

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Auras RA, et al.
Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Application null
Biodegradable polyesters for controlled release of trypanocidal drugs: in vitro and in vivo studies.
Lemmouchi Y, et al.
Biomaterials, 19(20), 1827-1837 (1998)

Articles

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

AliAliphatic polyesters, including polylactide and polyglycolide, are biodegradable polymers widely used in medical applications.

Immunosuppressive tumor-associated myeloid cells (TAMC) are responsible for glioblastoma (GBM) resistance to immunotherapies and existing standard of care treatments. This mini-review highlights recent progress in implementing nanotechnology in advancing TAMC-targeted therapies for GBM.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service