MilliporeSigma
All Photos(1)

Documents

735094

Sigma-Aldrich

Bis(2-methacryloyl)oxyethyl disulfide

contains ≤6000 ppm hydroquinone as stabilizer

Sign Into View Organizational & Contract Pricing

Synonym(s):
DSDMA, Disulfide-based dimethacrylate
Empirical Formula (Hill Notation):
C12H18O4S2
CAS Number:
Molecular Weight:
290.40
MDL number:
PubChem Substance ID:
NACRES:
NA.23

form

liquid

Quality Level

contains

≤6000 ppm hydroquinone as stabilizer

refractive index

n20/D 1.517

density

1.141 g/mL at 25 °C

storage temp.

2-8°C

SMILES string

CC(=C)C(=O)OCCSSCCOC(=O)C(C)=C

InChI

1S/C12H18O4S2/c1-9(2)11(13)15-5-7-17-18-8-6-16-12(14)10(3)4/h1,3,5-8H2,2,4H3

InChI key

CGDNFXSLPGLMHK-UHFFFAOYSA-N

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
436909CX039586680
Supelco

Supelco

CX0395

Carbon Disulfide

contains

≤6000 ppm hydroquinone as stabilizer

contains

BHT as inhibitor

contains

-

contains

~0.006% hydroquinone as stabilizer

refractive index

n20/D 1.517

refractive index

n20/D 1.485 (lit.)

refractive index

-

refractive index

n20/D 1.463

density

1.141 g/mL at 25 °C

density

1.11 g/mL at 25 °C (lit.)

density

1.26 g/cm3 at 20 °C

density

1.082 g/mL at 20 °C (lit.)

storage temp.

2-8°C

storage temp.

2-8°C

storage temp.

room temp

storage temp.

2-8°C

Quality Level

100

Quality Level

-

Quality Level

200

Quality Level

-

General description

Bis(2-methacryloyl)oxyethyl disulfide (DSDMA) belongs to the class of monomers known as disulfide-based dimethacrylates. It is widely employed as a crosslinker in the synthesis of various polymers with specific properties such as redox sensitivity and self-healing properties. DSDMA contains a disulfide bond, which can be cleaved under specific conditions, making it useful for drug delivery systems. It also undergoes thiol-disulfide exchange reactions, allowing it to react with thiols in polymers and form covalent crosslinks. This property enables the formation of networks and gels in polymer systems. Additionally, DSDMA is employed in the development of biomedical materials, such as tissue engineering scaffolds. Its ability to form stable crosslinks in biological environments makes it suitable for these applications.

Application

Bis(2-methacryloyl)oxyethyl disulfide (DSDMA) can be used in the following applications:
  • Used as a crosslinker in the synthesis of reduction-responsive molecularly imprinted polymer (MIPs) nanogels for drug delivery applications. This reduction-responsive property allows for control over drug delivery and modulation of the release properties of the MIPs.
  • Used as a crosslinker in the synthesis of self-healing polymer nanocomposites via dynamic disulfide exchange reaction and crosslinking properties. These self-healing polymer nanocomposites can be used in coatings, electronics, and packaging applications.
  • Used as a redox-responsive cross-linker in the synthesis of zwitterionic hydrogels for effective drug delivery. DSDMA provides structural stability, redox-responsiveness, and self-healing properties, which are essential for effective drug delivery.

Pictograms

Environment

Hazard Statements

Precautionary Statements

Hazard Classifications

Aquatic Chronic 2

Storage Class Code

10 - Combustible liquids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Kunihiko Kobayashi et al.
ACS applied materials & interfaces, 11(1), 151-159 (2018-12-12)
Soft-robotic devices such as polymeric microgrippers offer the possibility for pick and place of fragile biological cargo in hard-to-reach conduits with potential applications in drug delivery, minimally invasive surgery, and biomedical engineering. Previously, millimeter-sized self-folding thermomagnetically responsive soft grippers have
Zhaolong Yu et al.
Journal of materials chemistry. B, 8(30), 6418-6428 (2020-06-25)
Surgery combined with adjuvant or neoadjuvant chemotherapy is still the standard treatment for osteosarcoma. However, the high risk of tumor recurrence and side effects of chemotherapy usually lead to high mortality for cancer patients. Herein, the multi-targeted receptor tyrosine kinase
Yu Xu et al.
Theranostics, 10(13), 5966-5978 (2020-06-03)
Rationale: Structural stability and size controllability are critical issues to semiconducting polymer nanoparticles (SPNs), which currently show great potential for theranostic applications. Methods: Herein, multi-responsive semiconducting polymer semi-interpenetrating nanoparticles (PDPP3T@PNIPAMAA IPNs) with highly stable structure and uniform size have been
Wenwen Li; Krzysztof Matyjaszewski; Krystyna Albrecht; Martin Moller
Macromolecules, 42, 8228-8228 (2009)
David S Spencer et al.
Journal of polymer science. Part A, Polymer chemistry, 56(14), 1536-1544 (2019-03-25)
Crosslinked cationic nanoscale networks with hydrophobic cores are an environmentally robust alternative to self-assembled polymeric drug delivery carriers with respect to therapeutic encapsulation and stability to dilution. However, the ability to tune the degree of PEG incorporated into nanogels during

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service