MilliporeSigma
All Photos(2)

Documents

757365

Sigma-Aldrich

Lithium nickel dioxide

powder, <3 μm particle size (BET), ≥98% trace metals basis

Sign Into View Organizational & Contract Pricing

Synonym(s):
LNO, Lithium nickel oxide, Lithium nickelate
Linear Formula:
LiNiO2
CAS Number:
Molecular Weight:
97.63

grade

battery grade

Quality Level

Assay

≥98% trace metals basis

form

powder

mol wt

Mw 97.63 g/mol

composition

LiNiO2

particle size

<3 μm (BET)

mp

>1,000 °C (lit.)

density

4.62 g/cm3 (lit.)

application(s)

battery manufacturing

InChI

1S/Li.Ni.2O/q+1;;;-1

InChI key

VROAXDSNYPAOBJ-UHFFFAOYSA-N

Related Categories

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
725137725129761001
assay

≥98% trace metals basis

assay

≥98% trace metals basis

assay

≥98% trace metals basis

assay

>98%

form

powder

form

powder

form

powder

form

powder

mol wt

Mw 97.63 g/mol

mol wt

Mw 93.88 g/mol

mol wt

Mw 180.81 g/mol

mol wt

Mw 96.46 g/mol

composition

LiNiO2

composition

LiMnO2

composition

LiMn2O4

composition

LiNi0.33Mn0.33Co0.33O2

particle size

<3 μm (BET)

particle size

<1 μm

particle size

<0.5 μm (BET)

particle size

<0.5 μm

General description

Lithium nickel dioxide (LNO) is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.

Application

Cathode material with high capacity and good reversibility for rechargeable Lithium ion batteries. Sub-micron particle size results in increased surface area of electrodes, thus improving their performance.
LNO can be used as a cathode material with a high discharge voltage of 4V and a high diffusion coefficient of ~10−8-10−10 cm2s−1. It has a high specific capacity and can be used the fabrication of lithium-ion batteries.

Legal Information

Product of Engi-Mat Co.

Pictograms

Exclamation markHealth hazard

Signal Word

Danger

Hazard Statements

Hazard Classifications

Carc. 1A Inhalation - Skin Sens. 1 - STOT RE 1

Storage Class Code

6.1C - Combustible, acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Slide 1 of 8

1 of 8

Thackeray, M. M.; et al.
Journal of Materials Chemistry, 17, 3112-3112 (2007)
Broussely, M.; et al.
Journal of Power Sources, 54, 109-109 (1995)
Synthesis and electrode performance of layered nickel dioxide containing alkaline ions
Arai H, et al.
Electrochimica Acta, 50(9), 1821-1828 (2005)
Electrochemical characterization of a lithiated mixed nickel-cobalt oxide (LiNi 0.5 Co 0.5 O 2) prepared by sol-gel process
Croce F, et al.
Ionics, 3(5-6), 390-395 (1997)
The Li-ion rechargeable battery: a perspective
Goodenough JB and Park K
Journal of the American Chemical Society, 135(4), 1167-1176 (2013)

Articles

Professor Qiao’s laboratory lays out recent advances in conversion type lithium metal fluoride batteries. This review explores key concepts in developing electrochemically stable microstructures for wide Li-ion insertion channels.

Solid oxide fuel cells (SOFC) and solid oxide electrolyzers (SOE) are in the early stages of development; however, the performance that has been achieved shows promise for conversion between chemical and electrical energy.

Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.

Lithium-ion batteries (LIBs) have been widely adopted as the most promising portable energy source in electronic devices because of their high working voltage, high energy density, and good cyclic performance.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service