All Photos(1)




Tungsten oxide (WO3-x) nanoparticle ink

Sign Into View Organizational & Contract Pricing

Avantama P-10, Nanograde P-10, Tungsten oxide nanoparticle dispersion, Tungsten oxide suspension, WO3 dispersion, WO3 ink
Linear Formula:



Quality Level


2.5 wt. % in 2-propanol

particle size

<50 nm (BET)


0.7992 g/mL at 25 °C

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
particle size

<50 nm (BET)

particle size

7-20 nm

particle size

10-15 nm

particle size

10-40 nm


2.5 wt. % in 2-propanol




2.5 wt. % (crystalline ZnO in 2-propanol)




0.7992 g/mL at 25 °C




0.800 g/mL at 25 °C



Quality Level


Quality Level


Quality Level


Quality Level


General description

This WO3-x nanoparticle ink is for slot-dye, spin-coating and doctor blading for the use as hole transport layer in printed electronics. Tungsten oxide nanoparticle ink is a hole-selective interface layer ink based on a colloidal suspension of tungsten oxide (WO3) nanoparticles in isopropanol. The average size of WO3 particle is optimized around 12-16 nm. Tungsten oxide nanoparticle exhibits high work function, processability and easy layer formation on hydrophilic as well as hydrophobic substrates.This WO3-x nanoparticle ink is universally applicable in normal and inverted architecture solar cells.
Annealing temperature <100°C.


WO3 nanoparticle ink can be applied in OPV cells as hole extraction layer (HEL) materials. Tungsten oxide nanoparticle ink can be mixed with PEDOT:PSS formulations in order to fine tune electronic and morphological dry layer properties (e.g. conductivity, surface roughness or layer porosity).

Other Notes

Prior to application: Ultrasonicate and (optionally) filter through 0.45 μm PTFE filter
Working conditions: Application and film drying under nitrogen (or low humidity)
Post-treatment: Annealing of deposited WO3-x films at 80°C - 120°C

Legal Information

Product of Avantama Ltd.


FlameExclamation mark

Signal Word


Hazard Statements

Precautionary Statements

Hazard Classifications

Eye Irrit. 2 - Flam. Liq. 2 - STOT SE 3

Target Organs

Central nervous system

Storage Class Code

3 - Flammable liquids



Flash Point(F)

53.6 °F - closed cup

Flash Point(C)

12 °C - closed cup

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).


Product Number
Pack Size/Quantity

Additional examples:





enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Customers Also Viewed

Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer
Christoph J. Brabec; et al.
Organic Electronics, 13(11), 2479-2484 (2012)
Lin Zhou et al.
Scientific reports, 9(1), 8778-8778 (2019-06-21)
This paper presents perovskite solar cells employed with WO3 nanoparticles embedded carbon top electrode. WO3 nanoparticles works as an inorganic hole-transport material (HTM) to promote the hole-extraction in the perovskite/carbon interface as revealed by efficiency, electrochemical impedance and external quantum
High Fill Factor Polymer Solar Cells Incorporating a Low Temperature Solution Processed WO3 Hole Extraction Layer
Christoph J. Brabec; et al.
Advanced Energy Materials, 2, 1433-1438 (2012)
A universal method to form the equivalent ohmic contact for efficient solution-processed organic tandem solar cells
Journal of Material Chemistry A, 2, 14896?14902-14896?14902 (2014)
Chun-Chao Chen et al.
Advanced materials (Deerfield Beach, Fla.), 26(32), 5670-5677 (2014-07-22)
Tandem solar cells have the potential to improve photon conversion efficiencies (PCEs) beyond the limits of single-junction devices. In this study, a triple-junction tandem design is demonstrated by employing three distinct organic donor materials having bandgap energies ranging from 1.4


Find advantages of inorganic interface layer inks for organic electronic & other applications.

Professor Tokito and Professor Takeda share their new materials, device architecture design principles, and performance optimization protocols for printed and solution-processed, low-cost, highly flexible, organic electronic devices.

Recent progress in the area of solution-processed functional materials has led to the development of a variety of thin-film optoelectronic devices with significant promise in the industrial and consumer electronics fields.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service