Skip to Content
MilliporeSigma
  • Loss of presenilin 2 is associated with increased iPLA2 activity and lung tumor development.

Loss of presenilin 2 is associated with increased iPLA2 activity and lung tumor development.

Oncogene (2014-05-27)
H-M Yun, M H Park, D H Kim, Y J Ahn, K-R Park, T M Kim, N Y Yun, Y S Jung, D Y Hwang, D Y Yoon, S B Han, J T Hong
ABSTRACT

Presenilins are the enzymatic components of γ-secretase complex that cleaves amyloid precursor protein, Notch and β-catenin, which has critical roles in the development of Alzheimer's disease and cancer cell growth. Therefore, in the present study, we studied the effects and mechanisms of PS2 knockout on lung cancer development and possible mechanisms as a key regulator of lung tumor development. We compared carcinogen-induced tumor growth between PS2 knockout mice and wild-type mice. PS2 knockout mice showed increased urethane (1 mg/g)-induced lung tumor incidence when compared with that of wild-type mice with decreased activity of γ-secretase in the lung tumor tissues. Consequently, iPLA2 activities in lung tumor tissues of PS2 knockout mice were much higher than in tumor tissues of wild-type mice. Furthermore, knockdown of PS2 using PS2 siRNA decreased γ-secretase activity with increased iPLA2 activity in the lung cancer cells (A549 and NCI-H460), leading to increased lung cancer cell growth. PS2 knockout mice and PS2 knockdown lung cancer cells showed increased DNA-binding activities of nuclear factor kappa-beta, signal transducer and activator of transcription 3 (STAT3) and AP-1 which are critical transcriptional factors of iPLA2 than those of PS2 wild-type mice and control lung cancer cells. Taken together, these results suggest that the loss of PS2 could have a critical role in lung tumor development through the upregulation of iPLA2 activity by reducing γ-secretase.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Supelco
Glutathione, Pharmaceutical Secondary Standard; Certified Reference Material
Glutathione, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
MISSION® esiRNA, targeting human PSEN2
Sigma-Aldrich
Glycerol solution, puriss., meets analytical specification of Ph. Eur., BP, 84-88%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Urethane, ≥99.0% (GC)
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerin, meets USP testing specifications
Sigma-Aldrich
Urethane, ≥99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Alg3
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Psen2
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Pdcd6
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%