Skip to Content
MilliporeSigma
  • Blockade of interleukin-8 receptor signalling inhibits cyst development in vitro, via suppression of cell proliferation in autosomal polycystic kidney disease.

Blockade of interleukin-8 receptor signalling inhibits cyst development in vitro, via suppression of cell proliferation in autosomal polycystic kidney disease.

Nephrology (Carlton, Vic.) (2014-04-15)
Eun Ji Lee, Seon Ah Song, Hyo Won Mun, Kyung Hyun Yoo, Soo Young Choi, Eun Young Park, Jong Hoon Park
ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a highly prevalent inherited disorder and results in the progressive development of cysts in both kidneys. In recent studies, several cytokines and growth factors secreted by the cyst-lining epithelia were identified to be upregulated and promote cyst growth. According to our previous study, chemokines with a similar amino acid sequence as human interleukin-8 (IL-8) are highly expressed in a rodent model with renal cysts. Therefore, in this study, we focused on whether IL-8 signalling is associated with renal cyst formation, and tested the possibility of IL-8 as a new therapeutic target for ADPKD. Expression of IL-8 and its receptor were screened either by enzyme linked immunosorbent assay (ELISA) or Western blot. Inhibited IL-8 signalling by antagonist for IL-8 receptor or gene silencing was tested in molecular levels, mainly through Western blot. And cell proliferation was measured by XTT assays. Finally, a three-dimensional culture was performed to understand how IL-8 affected cyst formation, in vitro. Interleukin-8 secretion and expression of its receptor highly increased in two different human ADPKD cell lines (WT9-7 and WT9-12), compared to normal human renal cortical epithelial cell line. Cell proliferation, which is mediated by IL-8 signal, was inhibited either by an antagonist or siRNA targeting for IL-8 receptor. Finally, a three-dimensional culture showed an alleviation of cystogenesis in vitro, after blocking the IL-8 receptor signals. These results suggest that IL-8 and its signalling molecules could be new biomarkers and a therapeutic target of ADPKD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, SAJ special grade, ≥97.0%
Sigma-Aldrich
Copper(II) sulfate, JIS first grade, ≥97.5%
Supelco
Sodium dodecyl sulfate, dust-free pellets, suitable for electrophoresis, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, 92.5-100.5% based on total alkyl sulfate content basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Sodium dodecyl sulfate, tested according to NF, mixture of sodium alkyl sulfates consisting mainly of sodium dodecyl sulfate
Sigma-Aldrich
Sodium dodecyl sulfate, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Copper(II) sulfate, anhydrous, powder, ≥99.99% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, BioUltra, for molecular biology, ≥99.0% (GC)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Sodium dodecyl sulfate, BioReagent, suitable for electrophoresis, for molecular biology, ≥98.5% (GC), free-flowing, Redi-Dri
Sigma-Aldrich
Copper(II) sulfate, puriss. p.a., anhydrous, ≥99.0% (RT)
Sigma-Aldrich
Copper(II) sulfate, puriss., meets analytical specification of Ph. Eur., BP, USP, anhydrous, 99-100.5% (based on anhydrous substance)
Sigma-Aldrich
Copper(II) sulfate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 10% in H2O
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, for molecular biology, 20% in H2O
Sodium laurilsulfate, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
MISSION® esiRNA, targeting human CXCR1