Skip to Content
MilliporeSigma
  • Vitamin C compromises cardiac resuscitability in a rat model of ventricular fibrillation.

Vitamin C compromises cardiac resuscitability in a rat model of ventricular fibrillation.

American journal of therapeutics (2012-06-21)
Jill Motl, Jeejabai Radhakrishnan, Iyad M Ayoub, Stefek Grmec, Raúl J Gazmuri
ABSTRACT

Resuscitation from cardiac arrest is partly limited by progressive reduction in left ventricular distensibility, leading to decreased hemodynamic efficacy of cardiopulmonary resuscitation (CPR). Reduction in left ventricular distensibility has been linked to loss of mitochondrial bioenergetic function that can result from oxidative injury. Attenuation of oxidative injury by administration of vitamin C during CPR may help maintain left ventricular distensibility and favor resuscitability and survival. Ventricular fibrillation was electrically induced in 2 series of 16 rats each and left untreated for 10 minutes. Resuscitation was attempted by 8 minutes of CPR and delivery of electrical shocks. Dehydroascorbate (DHA)-an oxidized form of vitamin C that enters the cell via glucose transporters-was used in series 1 and ascorbic acid (AA)-the reduced form of vitamin C that enters the cell via specialized AA transporters-in series 2. In each series, rats were randomized 1:1 to receive a 250 mg/kg right atrial bolus of DHA or AA or vehicle immediately before chest compression. Left ventricular distensibility-measured as the ratio between coronary perfusion pressure and compression depth-was numerically lower (not significant) in rats that received DHA (1.6 ± 0.2 vs. 1.9 ± 0.7 mm Hg/mm) and AA (1.8 ± 0.6 vs. 1.9 ± 0.3 mm Hg/mm). In addition, resuscitability was compromised by DHA (2/8 vs. 7/8; P = 0.041) and by AA (0/8 vs. 5/8; P = 0.026). AA levels in mitochondria were no different than control. Vitamin C failed to preserve left ventricular distensibility during CPR and had detrimental effects on resuscitability, suggesting possible disruption of protective signaling mechanisms during oxidative stress by vitamin C.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trichloroacetic acid, BioUltra, ≥99.5% (T)
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Trichloroacetic acid, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Trichloroacetic acid, ≥99.0% (titration)
Sigma-Aldrich
Trichloroacetic acid, suitable for electrophoresis, suitable for fixing solution (for IEF and PAGE gels), ≥99%
Sigma-Aldrich
Trichloroacetic acid, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium hydroxide solution, 4 M
Sigma-Aldrich
Sodium hydroxide, JIS special grade, ≥96.0%
Sigma-Aldrich
Sodium hydroxide solution, 1 M
Sigma-Aldrich
Sodium hydroxide solution, 0.05 M
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Sodium hydroxide solution, 0.01 M
Sigma-Aldrich
Sodium hydroxide solution, 0.1 M
Sigma-Aldrich
Sodium hydroxide solution, 7 M
Sigma-Aldrich
Sodium hydroxide solution, 6 M
Sigma-Aldrich
Sodium hydroxide, SAJ first grade, ≥95.0%
Sigma-Aldrich
Sodium hydroxide solution, 0.2 M
Sigma-Aldrich
Trichloroacetic acid, ACS reagent, for the determination of Fe in blood according to Heilmeyer, ≥99.5%
Sigma-Aldrich
Sodium hydroxide solution, purum, ≥32%
Sigma-Aldrich
Sodium hydroxide, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%