Skip to Content
MilliporeSigma
  • Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal.

Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal.

The Science of the total environment (2014-09-01)
Nuria Ortuño, Juan A Conesa, Julia Moltó, Rafael Font
ABSTRACT

The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO2005-TEQ/kg sample, corresponding to the sample with and without metals, respectively.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetone, for residue analysis, JIS 5000
Sigma-Aldrich
Acetone, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetone, ≥99.5%, for residue analysis
Sigma-Aldrich
Acetone, for residue analysis, ≥99.5%
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
Acetone, JIS special grade, ≥99.5%
Supelco
Acetone, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Acetone, analytical standard
Sigma-Aldrich
Acetone, for chromatography, ≥99.8%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Acetone, natural, ≥97%
USP
Acetone, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetone, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.8%
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, Laboratory Reagent, ≥99.5%
Sigma-Aldrich
Acetone, puriss., meets analytical specification of Ph. Eur., BP, NF, ≥99% (GC)
Sigma-Aldrich
Acetone, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.5% (GC)
Sigma-Aldrich
Acetone, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetone, histological grade, ≥99.5%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Hexane, suitable for HPLC
Sigma-Aldrich
Ethyl acetate, suitable for HPLC
Sigma-Aldrich
Hexane, SAJ first grade, ≥95.0%
Sigma-Aldrich
Ethyl acetate, JIS special grade, ≥99.5%
Sigma-Aldrich
Toluene, JIS special grade, ≥99.5%
Sigma-Aldrich
Hexane, JIS 300, ≥96.0%, for residue analysis
Sigma-Aldrich
Toluene, SAJ first grade, ≥99.0%
Sigma-Aldrich
Hexane, ≥96.0%, suitable for residual phthalate analysis