コンテンツへスキップ
Merck
  • Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity.

Phosphorylation of the adaptor ASC acts as a molecular switch that controls the formation of speck-like aggregates and inflammasome activity.

Nature immunology (2013-11-05)
Hideki Hara, Kohsuke Tsuchiya, Ikuo Kawamura, Rendong Fang, Eduardo Hernandez-Cuellar, Yanna Shen, Junichiro Mizuguchi, Edina Schweighoffer, Victor Tybulewicz, Masao Mitsuyama
要旨

The inflammasome adaptor ASC contributes to innate immunity through the activation of caspase-1. Here we found that signaling pathways dependent on the kinases Syk and Jnk were required for the activation of caspase-1 via the ASC-dependent inflammasomes NLRP3 and AIM2. Inhibition of Syk or Jnk abolished the formation of ASC specks without affecting the interaction of ASC with NLRP3. ASC was phosphorylated during inflammasome activation in a Syk- and Jnk-dependent manner, which suggested that Syk and Jnk are upstream of ASC phosphorylation. Moreover, phosphorylation of Tyr144 in mouse ASC was critical for speck formation and caspase-1 activation. Our results suggest that phosphorylation of ASC controls inflammasome activity through the formation of ASC specks.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
L-チロシン, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-チロシン, BioUltra, ≥99.0% (NT)
SAFC
L-チロシン
Sigma-Aldrich
L-チロシン, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
L-チロシン, FG
Supelco
L-チロシン, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-チロシン, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland