MilliporeSigma
All Photos(1)

409510

Sigma-Aldrich

Poly(ethylene glycol) dimethacrylate

average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor

Sign Into View Organizational & Contract Pricing

Select a Size

Synonym(s):
PEG dimethacrylate
Linear Formula:
C3H5C(O)(OCH2CH2)nOC(O)C3H5
CAS Number:
MDL number:
PubChem Substance ID:
NACRES:
NA.23

form

liquid

Quality Level

mol wt

average Mn 550

contains

270-330 ppm BHT as inhibitor
80-120 ppm MEHQ as inhibitor

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

refractive index

n20/D 1.466

bp

>200 °C/2 mmHg (lit.)

density

1.099 g/mL at 25 °C

Ω-end

methacrylate

α-end

methacrylate

polymer architecture

shape: linear
functionality: homobifunctional

storage temp.

2-8°C

SMILES string

OCCO.CC(=C)C(O)=O

InChI

1S/C10H14O4/c1-7(2)9(11)13-5-6-14-10(12)8(3)4/h1,3,5-6H2,2,4H3

InChI key

STVZJERGLQHEKB-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Compare Similar Items

View Full Comparison

Show Differences

1 of 4

This Item
437468687537687529
mol wt

average Mn 550

mol wt

average Mn 750

mol wt

average Mn 6,000

mol wt

average Mn 2000

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

reaction suitability

reagent type: cross-linking reagent
reaction type: Polymerization Reactions

density

1.099 g/mL at 25 °C

density

1.11 g/mL at 25 °C

density

-

density

-

Ω-end

methacrylate

Ω-end

methacrylate

Ω-end

methacrylate

Ω-end

methacrylate

α-end

methacrylate

α-end

methacrylate

α-end

methacrylate

α-end

methacrylate

Storage Class Code

10 - Combustible liquids

WGK

WGK 1

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Documents related to the products that you have purchased in the past have been gathered in the Document Library for your convenience.

Visit the Document Library

Difficulty Finding Your Product Or Lot/Batch Number?

Product numbers are combined with Pack Sizes/Quantity when displayed on the website (example: T1503-25G). Please make sure you enter ONLY the product number in the Product Number field (example: T1503).

Example:

T1503
Product Number
-
25G
Pack Size/Quantity

Additional examples:

705578-5MG-PW

PL860-CGA/SHF-1EA

MMYOMAG-74K-13

1000309185

enter as 1.000309185)

Having trouble? Feel free to contact Technical Service for assistance.

Lot and Batch Numbers can be found on a product's label following the words 'Lot' or 'Batch'.

Aldrich Products

  • For a lot number such as TO09019TO, enter it as 09019TO (without the first two letters 'TO').

  • For a lot number with a filling-code such as 05427ES-021, enter it as 05427ES (without the filling-code '-021').

  • For a lot number with a filling-code such as STBB0728K9, enter it as STBB0728 without the filling-code 'K9'.

Not Finding What You Are Looking For?

In some cases, a COA may not be available online. If your search was unable to find the COA you can request one.

Request COA

Laura Ferlauto et al.
Frontiers in neuroscience, 12, 648-648 (2018-10-05)
Reducing the mechanical mismatch between the stiffness of a neural implant and the softness of the neural tissue is still an open challenge in neuroprosthetics. The emergence of conductive hydrogels in the last few years has considerably widened the spectrum
C Aulin et al.
Laboratory animals, 47(1), 58-65 (2013-03-08)
Articular cartilage has a limited capacity for self-repair in adult humans, and methods used to stimulate regeneration often result in re-growth of fibrous cartilage, which has lower durability. No current treatment option can provide complete repair. The possibility of growth
Pelagie M Favi et al.
Materials science & engineering. C, Materials for biological applications, 33(4), 1935-1944 (2013-03-19)
The culture of multipotent mesenchymal stem cells on natural biopolymers holds great promise for treatments of connective tissue disorders such as osteoarthritis. The safety and performance of such therapies relies on the systematic in vitro evaluation of the developed stem
Albert H Park et al.
The Laryngoscope, 123(4), 1043-1048 (2013-03-21)
To determine the resorption rate and biocompatibility characteristics of novel cross-linked hydrogel ventilation tubes and varied formulations of polyester ventilation tubes in a Chinchilla model. Animal Study. Three cross-linked glycosaminoglycan hydrogel ventilation tubes fabricated by cross-linking thiol-modified chondroitin sulfate or
Kenneth C Koehler et al.
Biomaterials, 34(16), 4150-4158 (2013-03-08)
We report a new approach to controlled drug release based upon exploiting the dynamic equilibrium that exists between Diels-Alder reactants and products, demonstrating the release of a furan containing dexamethasone peptide (dex-KGPQG-furan) from a maleimide containing hydrogel. Using a reaction-diffusion

Articles

Patterning of PEG-based Hydrogels - Engineering Spatial Complexity

2D and 3D scaffold patterning techniques can be applied in the presence of cells using poly(ethylene glycol) (PEG)-based hydrogels. These methods can be applied to any optically transparent, photoactive substrate.

Degradable Poly(ethylene glycol) Hydrogels for 2D and 3D Cell Culture

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Versatile Cell Culture Scaffolds via Bio-orthogonal Click Reactions

Devising biomaterial scaffolds that are capable of recapitulating critical aspects of the complex extracellular nature of living tissues in a threedimensional (3D) fashion is a challenging requirement in the field of tissue engineering and regenerative medicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service