Skip to Content
MilliporeSigma
  • Proteomic profile of dormancy within Staphylococcus epidermidis biofilms using iTRAQ and label-free strategies.

Proteomic profile of dormancy within Staphylococcus epidermidis biofilms using iTRAQ and label-free strategies.

Applied microbiology and biotechnology (2015-02-13)
Virginia Carvalhais, Nuno Cerca, Manuel Vilanova, Rui Vitorino
ABSTRACT

Staphylococcus epidermidis is an important nosocomial bacterium among carriers of indwelling medical devices, since it has a strong ability to form biofilms. The presence of dormant bacteria within a biofilm is one of the factors that contribute to biofilm antibiotic tolerance and immune evasion. Here, we provide a detailed characterization of the quantitative proteomic profile of S. epidermidis biofilms with different proportions of dormant bacteria. A total of 427 and 409 proteins were identified by label-free and label-based quantitative methodologies, respectively. From these, 29 proteins were found to be differentially expressed between S. epidermidis biofilms with prevented and induced dormancy. Proteins overexpressed in S. epidermidis with prevented dormancy were associated with ribosome synthesis pathway, which reflects the metabolic state of dormant bacteria. In the opposite, underexpressed proteins were related to catalytic activity and ion binding, with involvement in purine, arginine, and proline metabolism. Additionally, GTPase activity seems to be enhanced in S. epidermidis biofilm with induced dormancy. The role of magnesium in dormancy modulation was further investigated with bioinformatics tool based in predicted interactions. The main molecular function of proteins, which strongly interact with magnesium, was nucleic acid binding. Different proteomic strategies allowed to obtain similar results and evidenced that prevented dormancy led to an expression of a markedly different repertoire of proteins in comparison to the one of dormant biofilms.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2,4-Dinitrophenol, moistened with water, ≥98.0%
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium dodecyl sulfate, ACS reagent, ≥99.0%
Supelco
Acetone, analytical standard
Sigma-Aldrich
Sodium dodecyl sulfate, ≥98.0% (GC)
Supelco
Sodium dodecyl sulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Phenylmethanesulfonyl fluoride, ≥99.0% (T)
Sigma-Aldrich
Sodium dodecyl sulfate, ≥90% ((Assay))
Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Supelco
2,4-Dinitrophenol, PESTANAL®, analytical standard
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, ~0.025 M in H2O
Sigma-Aldrich
2-Mercaptoethanol, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Magnesium chloride solution, BioUltra, for molecular biology, 2 M in H2O
Sigma-Aldrich
2-Mercaptoethanol, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium dodecyl sulfate, BioXtra, ≥99.0% (GC)