Skip to Content
MilliporeSigma
  • Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.

Effects of Caffeic Acid Phenethyl Ester and 4-Vinylcatechol on the Stabilities of Oil-in-Water Emulsions of Stripped Soybean Oil.

Journal of agricultural and food chemistry (2015-10-23)
Cai-Hua Jia, Jung-Ah Shin, Ki-Teak Lee
ABSTRACT

Caffeic acid phenethyl ester (CAPE) and 4-vinylcatechol (4-VC) were prepared for studying their antioxidative activities in emulsion. Oil-in-water emulsions of stripped soybean oil containing 200 ppm of CAPE, 4-VC, or α-tocopherol were stored at 40 °C in the dark for 50 days, and proton nuclear magnetic resonance ((1)H NMR) was used to identify and quantify the oxidation products. Emulsion droplet sizes, peroxide values, and levels of primary oxidation products (i.e., hydroperoxides) and secondary oxidation products (i.e., aldehydes) were determined. The results showed that CAPE (200 ppm) and 4-VC (200 ppm) had significantly greater antioxidant activities on the oxidation of stripped soybean oil-in-water emulsions than α-tocopherol (200 ppm). The peroxide values of CAPE (8.4 mequiv/L emulsion) and 4-VC (15.0 mequiv/L emulsion) were significantly lower than that of α-tocopherol (33.4 mequiv/L emulsion) (p < 0.05) on 36 days. In addition, the combinations of CAPE + α-tocopherol (100 + 100 ppm) or 4-VC + α-tocopherol (100 + 100 ppm) had better antioxidant activities than α-tocopherol (200 ppm). For CAPE + α-tocopherol, 4-VC + α-tocopherol, and α-tocopherol, the amounts of conjugated diene forms were 16.67, 13.72, and 16.32 mmol/L emulsion, and the concentrations of aldehydes were 2.15, 1.13, and 4.26 mmol/L emulsion, respectively, after 50 days of storage.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium acetate trihydrate, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
2-Phenylethanol, ≥99.0% (GC)
Sigma-Aldrich
DCC, 1.0 M in methylene chloride
Sigma-Aldrich
Sodium acetate trihydrate, meets USP testing specifications
Sigma-Aldrich
Sodium acetate trihydrate, BioXtra, ≥99.0%
Sigma-Aldrich
Caffeic acid, ≥98.0% (HPLC)
Sigma-Aldrich
Sodium acetate trihydrate, ACS reagent, ≥99%
Sigma-Aldrich
Phenethyl alcohol, ≥99%, FCC, FG
Sigma-Aldrich
Phenethyl alcohol, natural, ≥99%, FCC, FG
Sigma-Aldrich
DCC, 99%
Sigma-Aldrich
Sodium acetate trihydrate, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E262, 99.0-101.0% (calc. to the dried substance), ≤0.00002% Al
Sigma-Aldrich
Sodium acetate trihydrate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Chloroform, suitable for HPLC
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
Sigma-Aldrich
N,N-Dimethylformamide, JIS special grade, ≥99.5%
Sigma-Aldrich
N,N-Dimethylformamide, SAJ first grade, ≥99.0%
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
Sodium sulfate, JIS special grade, ≥99.0%
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Tetramethylsilane, ≥99.0% (GC)
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Sodium sulfate, ≥99.99% trace metals basis