Skip to Content
MilliporeSigma
  • Dispelling clichés at the nanoscale: the true effect of polymer electrolytes on the performance of dye-sensitized solar cells.

Dispelling clichés at the nanoscale: the true effect of polymer electrolytes on the performance of dye-sensitized solar cells.

Nanoscale (2015-06-26)
Federico Bella, Adriano Sacco, Giulia Massaglia, Angelica Chiodoni, Candido Fabrizio Pirri, Marzia Quaglio
ABSTRACT

In the field of dye-sensitized solar cells, polymer electrolytes are among the most studied materials due to their ability to ensure both high efficiency and stability, the latter being a critical point of these devices. Hundreds of polymeric matrices have been proposed over the years, and their functionalization with several groups, the variation of their molecular weight and the tuning of the crosslinking degree have been investigated. However, the true effect that polymeric matrices have on the cell parameters has often been addressed superficially, and hundreds of papers justify the obtained results with a simple bibliographic reference to other systems (sometimes completely different). This work proposes a system of nanoscale growth and crosslinking of a polymer electrolyte inside a nanostructured photoanode. Electrochemical and photovoltaic parameters are carefully monitored as a function of thickness and degree of penetration of the electrolyte. The results derived from this study refute many clichés generally accepted and taken for granted in many literature articles, and – for the first time – a compromise between the amount of polymer, cell efficiency and stability is achieved.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Acetone, ≥99%, meets FCC analytical specifications
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Acetone, natural, ≥97%
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Chloroform, suitable for HPLC
Sigma-Aldrich
Acetone, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Acetone, for chromatography, ≥99.8%
Sigma-Aldrich
Chloroform, SAJ first grade, ≥99.0%, contains 0.4-0.8% ethanol
Sigma-Aldrich
Acetone, for residue analysis, ≥99.5%
Sigma-Aldrich
Chloroform, JIS 300, ≥99.0%, for residue analysis
Sigma-Aldrich
Chloroform, JIS special grade, ≥99.0%
Sigma-Aldrich
Acetone, ≥99.5%, for residue analysis
Sigma-Aldrich
Acetone, JIS special grade, ≥99.5%
Sigma-Aldrich
Chloroform, SAJ super special grade, ≥99.0%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetone, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetone, for residue analysis, JIS 5000
Sigma-Aldrich
Ethanol Fixative 80% v/v, suitable for fixing solution (blood films)
Sigma-Aldrich
Ethanol, JIS special grade, 94.8-95.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetone, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Ethanol, JIS first grade, 94.8-95.8%
Sigma-Aldrich
Tributylphosphine solution, 200 mM (in N-methyl-2-pyrrolidinone), liquid