コンテンツへスキップ
Merck
  • Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks.

Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks.

Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology (2014-10-21)
Jay G Hosking, Stan B Floresco, Catharine A Winstanley
要旨

Successful decision making often requires weighing a given option's costs against its associated benefits, an ability that appears perturbed in virtually every severe mental illness. Animal models of such cost/benefit decision making overwhelmingly implicate mesolimbic dopamine in our willingness to exert effort for a larger reward. Until recently, however, animal models have invariably manipulated the degree of physical effort, whereas human studies of effort have primarily relied on cognitive costs. Dopamine's relationship to cognitive effort has not been directly examined, nor has the relationship between individuals' willingness to expend mental versus physical effort. It is therefore unclear whether willingness to work hard in one domain corresponds to willingness in the other. Here we utilize a rat cognitive effort task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, and a previously established physical effort-discounting task (EDT) to examine dopaminergic and noradrenergic contributions to effort. The dopamine antagonists eticlopride and SCH23390 each decreased willingness to exert physical effort on the EDT; these drugs had no effect on willingness to exert mental effort for the rCET. Preference for the high effort option correlated across the two tasks, although this effect was transient. These results suggest that dopamine is only minimally involved in cost/benefit decision making with cognitive effort costs. The constructs of mental and physical effort may therefore comprise overlapping, but distinct, circuitry, and therapeutic interventions that prove efficacious in one effort domain may not be beneficial in another.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
塩酸, ACS reagent, 37%
Sigma-Aldrich
塩化水素 溶液, 4.0 M in dioxane
Sigma-Aldrich
塩酸 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
塩酸, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
塩酸, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
塩酸, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
塩酸, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
塩化水素 溶液, 2.0 M in diethyl ether
Supelco
塩酸 溶液, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
塩酸, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
塩酸, JIS special grade, 35.0-37.0%
Sigma-Aldrich
塩化水素 溶液, 1.0 M in diethyl ether
Sigma-Aldrich
塩酸, puriss., 24.5-26.0%
Sigma-Aldrich
塩酸 溶液, 1 M
Sigma-Aldrich
塩酸 溶液, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
塩酸 溶液, 0.1 M
Sigma-Aldrich
塩酸 溶液, 6 M
Sigma-Aldrich
塩酸 溶液, 12 M
Sigma-Aldrich
塩化水素 溶液, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
塩酸 溶液, 2 M
Sigma-Aldrich
ヨヒンビン 塩酸塩, ≥98% (HPLC), powder
Sigma-Aldrich
塩酸 溶液, 0.5 M
Sigma-Aldrich
塩酸 溶液, 0.2 M
Sigma-Aldrich
塩酸 溶液, 0.01 M
Supelco
塩化水素-メタノール 溶液, ~1.25 m HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
塩酸 溶液, 0.05 M
Sigma-Aldrich
塩酸 溶液, 0.02 M
Sigma-Aldrich
塩酸, suitable for determination of toxic metals, ≥35.0%
Supelco
塩化水素-エタノール 溶液, ~1.25 M HCl, for GC derivatization, LiChropur