Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

D0690

Sigma-Aldrich

DNA Gyrase from Escherichia coli

aqueous glycerol solution

Sign Into View Organizational & Contract Pricing


About This Item

Enzyme Commission number:
MDL number:
UNSPSC Code:
12352204
NACRES:
NA.54

biological source

Escherichia coli

Quality Level

form

aqueous glycerol solution

mol wt

~374 kDa

concentration

≥2 unit/μL

technique(s)

cell based assay: suitable

UniProt accession no.

application(s)

cell analysis

shipped in

dry ice

storage temp.

−70°C

Gene Information

Escherichia coli K12 ... gyrA(946614) , gyrB(948211)

Application

DNA gyrase from Escherichia coli has been used in a study to investigate a comparative proteomic approach to better define Deinococcus nucleoid specificities. DNA gyrase from Escherichia coli has also been used in a study to investigate the role of the DnaK-ClpB bichaperone system in DNA gyrase reactivation.

Biochem/physiol Actions

DNA gyrase is supplied as an A2B2 holoenzyme. The molecular mass of subunit A is 97 kDa and that of subunit B is 90 kDa. It catalyzes the ATP-dependent introduction of negative supercoils into relaxed DNA. DNA gyrase has been successfully converted into a type II topoisomerase by mutagenesis experiments.
Can be used to supercoil plasmids.

Unit Definition

One unit of gyrase activity will supercoil 0.5 micrograms of pBR-322 DNA in 30 minutes at 37 °C.

Other Notes

Solution in 50% Glycerol containing Tris buffer, DTT and EDTA.

Storage Class

10 - Combustible liquids

wgk_germany

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Magali Toueille et al.
Journal of proteomics, 75(9), 2588-2600 (2012-03-27)
Compared to radiation-sensitive bacteria, the nucleoids of radiation-resistant Deinococcus species show a higher degree of compaction. Such a condensed nucleoid may contribute to the extreme radiation resistance of Deinococcus by limiting dispersion of radiation-induced DNA fragments. Architectural proteins may play
Teresa Lara-Ortíz et al.
Canadian journal of microbiology, 58(2), 195-199 (2012-01-24)
In Escherichia coli cells, an increase in temperature induces immediate DNA relaxation, followed by the fast recovery of DNA supercoiling. DNA gyrase, proteins synthesized during heat stress, and chaperone DnaK have been proposed to participate in this recovery. However, the
Alix Pantel et al.
Antimicrobial agents and chemotherapy, 56(4), 1990-1996 (2012-02-01)
Fluoroquinolone (FQ) resistance is emerging in Mycobacterium tuberculosis. The main mechanism of FQ resistance is amino acid substitution within the quinolone resistance-determining region (QRDR) of the GyrA subunit of DNA gyrase, the sole FQ target in M. tuberculosis. However, substitutions
Adam B Shapiro
Biochemical pharmacology, 85(9), 1269-1277 (2013-02-19)
A novel, high-throughput-compatible assay for the ATP-dependent supercoiled DNA relaxing activity of human topoisomerase IIα (hTopoIIα) is described. The principle of detection is the preferential binding of the oligodeoxyribonucleotide BODIPY-TMR-5'-TTCTTCTTCT-3' to relaxed double-stranded plasmid containing the triplex forming sequence (TTC)9
PTTG1 expression and it's rapidly evolving role in the progression and development of systemic malignancies.
Journal of experimental therapeutics & oncology, 10(2), 163-164 (2013-01-29)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service