Skip to Content
Merck
  • RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions.

The European journal of neuroscience (2014-11-29)
Andrew R Chandna, Manoj Nair, Christine Chang, Paul R Pennington, Yasuhiko Yamamoto, Darrell D Mousseau, Verónica A Campanucci
ABSTRACT

Autonomic dysfunction is a serious complication of diabetes and can lead to cardiovascular abnormalities and premature death. It was recently proposed that autonomic dysfunction is triggered by oxidation-mediated inactivation of neuronal nicotinic acetylcholine receptors (nAChRs), impairing synaptic transmission in sympathetic ganglia and resulting in autonomic failure. We investigated whether the receptor for advanced glycation end products (RAGE) and its role in the generation of reactive oxygen species (ROS) could be contributing to the events that initiate sympathetic malfunction under high glucose conditions. Using biochemical, live imaging and electrophysiological tools we demonstrated that exposure of sympathetic neurons to high glucose increases RAGE expression and oxidative markers, and that incubation with RAGE ligands (e.g. AGEs, S100 and HMGB1) mimics both ROS elevation and nAChR inactivation. In contrast, co-treatment with either antioxidants or an anti-RAGE IgG prevented the inactivation of nAChRs. Lastly, a role for RAGE in this context was corroborated by the lack of sensitivity of sympathetic neurons from RAGE knock-out mice to high glucose. These data define a pivotal role for RAGE in initiating the events associated with exposure of sympathetic neurons to high glucose, and strongly support RAGE signaling as a potential therapeutic target in the autonomic complications associated with diabetes.

MATERIALS
Product Number
Brand
Product Description

Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in ethanol
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M
Sigma-Aldrich
Potassium hydroxide solution, 0.5 M in ethanol
Sigma-Aldrich
Calcium chloride solution, 3.2 mM
Sigma-Aldrich
Potassium hydroxide solution, 0.02 M in ethanol
Sigma-Aldrich
Calcium chloride solution, 0.025 M
Sigma-Aldrich
Potassium hydroxide solution, 0.1 M in isopropanol
Sigma-Aldrich
Potassium phosphate monobasic, ≥99.5%
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Calcium chloride, anhydrous, powder, 99.99% trace metals basis
Sigma-Aldrich
Potassium phosphate monobasic, 99.99% trace metals basis
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.9% trace metals basis
USP
Monobasic potassium phosphate, United States Pharmacopeia (USP) Reference Standard
Supelco
Calcium ion solution for ISE, 0.1 M Ca, for ion-selective electrodes, analytical standard (for ion-selective electrodes)
Sigma-Aldrich
Potassium hydroxide, tested according to Ph. Eur.
Sigma-Aldrich
Phenol Red, ACS reagent
Sigma-Aldrich
Calcium chloride solution, BioUltra, for molecular biology, ~1 M in H2O
Sigma-Aldrich
Potassium phosphate monobasic, BioUltra, for molecular biology, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.9% trace metals basis
Sigma-Aldrich
Magnesium chloride, AnhydroBeads, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
Calcium chloride, AnhydroBeads, −10 mesh, ≥99.99% trace metals basis
Sigma-Aldrich
Calcium chloride
Sigma-Aldrich
Magnesium chloride, BioReagent, suitable for insect cell culture, ≥97.0%
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
Potassium phosphate monobasic, ReagentPlus®
Sigma-Aldrich
Potassium phosphate monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%
Sigma-Aldrich
Magnesium chloride, anhydrous, ≥98%