Skip to Content
MilliporeSigma
  • Notch prevents transforming growth factor-beta-assisted epithelial-mesenchymal transition in cultured limbal progenitor cells through the induction of Smad7.

Notch prevents transforming growth factor-beta-assisted epithelial-mesenchymal transition in cultured limbal progenitor cells through the induction of Smad7.

Molecular vision (2014-05-03)
Tung-Han Tsai, Ming-Hui Sun, Tsung-Chuan Ho, Hsin-I Ma, Ming-Ying Liu, Yeou-Ping Tsao
ABSTRACT

Continuous culture of limbal epithelial stem cells (LSCs) slows down proliferation, which inevitably results in differentiation. Transforming growth factor-beta (TGFβ)-assisted epithelial-mesenchymal transition (EMT) is often found in the late stage of LSC culture. Thus, EMT is proposed to be part of the mechanism responsible for the loss of LSCs in culture. To explore the regulation mechanism of EMT, we investigated the early stage culture for factor(s) that may potentially prevent EMT. LSCs from the corneal limbus region of rabbits were isolated and expanded to confluence in culture (P0), and then serial passage of these LSCs (P1 to P3) was performed. EMT in LSCs was induced with TGFβ1, and the corresponding EMT signaling was confirmed with Smad2/3 phosphorylation. The expression of mesenchymal markers, including alpha-smooth muscle actin (α-SMA) and vimentin, was determined with western blot analysis. Proteins extracted from different passaged cells were also subjected to western blot analysis of TGFβ signaling components, including TGFβ1, TGFβ receptor I/II, and Smad2/3 as well as Smad7, the main negative regulator of TGFβ signaling. The mitogenic response was measured with the bromodeoxyuridine (BrdU) labeling index and real-time PCR using primers for Ki67. N-(N-[3,5-difluorophenacetyl]-l-alanyl)-S-phenylglycine t-butyl ester (DAPT), a gamma-secretase inhibitor, and Jagged-1 Notch ligand were used to block and activate Notch signaling, respectively, and their efficacy was evaluated by determining the expression of Hes1, a Notch signaling target. Mesenchymal marker induction and growth arrest were found in the TGFβ1-treated P1 cells, and the changes were less significant in the TGFβ1-treated P0 cells. Western blot analysis confirmed that the expressed levels of TGFβ signaling components, including TGFβ1, TGFβ receptor I/II, and Smad2/3, were relatively stable with passages. In contrast, the expression of Hes1 and Smad7 markedly decreased after the first passage, and with each passage, the levels diminished even further. Hes1 and Smad7 were expressed only in the limbal epithelium and not in the corneal epithelium. DAPT effectively blocked the expression of Hes1. DAPT also dose-dependently suppressed Smad7 expression in P0 cells, which was associated with the susceptibility of P0 cells to TGFβ1-induced Smad2/3 phosphorylation, EMT formation, and growth arrest. Reciprocally, Jagged-1 upregulated Smad7 expression in LSCs against TGFβ signaling. These findings indicate that Smad7 plays a crucial role in antagonizing EMT induced by TGFβ signaling and support our proposition that Smad7 is a Notch signaling target in LSCs, and may mediate the Notch function in preventing the occurrence of EMT.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium selenite, anhydrous, ≥90.0% (RT)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Formaldehyde solution, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, ≥97.5% (HPLC)
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium selenite, 99%
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, ≥97.5% (HPLC)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Formaldehyde solution, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Supelco
Formaldehyde solution, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
Sodium selenite, BioReagent, suitable for cell culture, ≥98%
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Sodium chloride solution, 0.85%
Supelco
Hydrocortisone, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Sodium selenite, SAJ first grade, ≥90.0%
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Formaldehyde solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde solution, 10%