Skip to Content
MilliporeSigma
  • Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins.

Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins.

The Journal of neuroscience : the official journal of the Society for Neuroscience (2014-07-25)
Boris Sabirzhanov, Zaorui Zhao, Bogdan A Stoica, David J Loane, Junfang Wu, Carlos Borroto, Susan G Dorsey, Alan I Faden
ABSTRACT

MicroRNAs (miRs) are small noncoding RNAs that negatively regulate gene expression at the post-transcriptional level. To identify miRs that may regulate neuronal cell death after experimental traumatic brain injury (TBI), we profiled miR expression changes during the first several days after controlled cortical impact (CCI) in mice. miR-23a and miR-27a were rapidly downregulated in the injured cortex in the first hour after TBI. These changes coincided with increased expression of the proapoptotic Bcl-2 family members Noxa, Puma, and Bax. In an etoposide-induced in vitro model of apoptosis in primary cortical neurons, miR-23a and miR-27a were markedly downregulated as early as 1 h after exposure, before the upregulation of proapoptotic Bcl-2 family molecules. Administration of miR-23a and miR-27a mimics attenuated etoposide-induced changes in Noxa, Puma, and Bax, reduced downstream markers of caspase-dependent (cytochrome c release and caspase activation) and caspase-independent (apoptosis-inducing factor release) pathways, and limited neuronal cell death. In contrast, miRs hairpin inhibitors enhanced etoposide-induced neuronal apoptosis and caspase activation. Importantly, administration of miR-23a and miR-27a mimics significantly reduced activation of Puma, Noxa, and Bax as well as attenuated markers of caspase-dependent and -independent apoptosis after TBI. Furthermore, miR-23a and miR-27a mimics significantly attenuated cortical lesion volume and neuronal cell loss in the hippocampus after TBI. These findings indicate that post-traumatic decreases in miR-23a and miR-27a contribute to neuronal cell death after TBI by upregulating proapoptotic Bcl-2 family members, thus providing a novel therapeutic target.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Anti-β-Actin antibody, Mouse monoclonal, clone AC-15, purified from hybridoma cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Formaldehyde solution, 10%
Sigma-Aldrich
Formaldehyde solution, SAJ first grade, ≥35.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde solution, JIS special grade, 36.0-38.0%, contains methanol as stabilizer
Sigma-Aldrich
Formaldehyde-12C solution, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
Formaldehyde solution, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
Protease Inhibitor Cocktail, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
Phosphatase Inhibitor Cocktail 2, aqueous solution (dark coloration may develop upon storage, which does not affect the activity)
Sigma-Aldrich
Formaldehyde solution, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
SAFC
HEPES
Sigma-Aldrich
HEPES, BioUltra, Molecular Biology, ≥99.5% (T)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
SAFC
Formaldehyde solution, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
Formaldehyde solution, tested according to Ph. Eur.
Sigma-Aldrich
Formaldehyde solution, Molecular Biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%