Skip to Content
MilliporeSigma
  • Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.

Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.

Biomaterials (2014-12-30)
Craig S Schneider, Jimena G Perez, Emily Cheng, Clark Zhang, Panagiotis Mastorakos, Justin Hanes, Jeffrey A Winkles, Graeme F Woodworth, Anthony J Kim
ABSTRACT

A major limitation in the treatment of glioblastoma (GBM), the most common and deadly primary brain cancer, is delivery of therapeutics to invading tumor cells outside of the area that is safe for surgical removal. A promising way to target invading GBM cells is via drug-loaded nanoparticles that bind to fibroblast growth factor-inducible 14 (Fn14), thereby potentially improving efficacy and reducing toxicity. However, achieving broad particle distribution and nanoparticle targeting within the brain remains a significant challenge due to the adhesive extracellular matrix (ECM) and clearance mechanisms in the brain. In this work, we developed Fn14 monoclonal antibody-decorated nanoparticles that can efficiently penetrate brain tissue. We show these Fn14-targeted brain tissue penetrating nanoparticles are able to (i) selectively bind to recombinant Fn14 but not brain ECM proteins, (ii) associate with and be internalized by Fn14-positive GBM cells, and (iii) diffuse within brain tissue in a manner similar to non-targeted brain penetrating nanoparticles. In addition, when administered intracranially, Fn14-targeted nanoparticles showed improved tumor cell co-localization in mice bearing human GBM xenografts compared to non-targeted nanoparticles. Minimizing non-specific binding of targeted nanoparticles in the brain may greatly improve the access of particulate delivery systems to remote brain tumor cells and other brain targets.

MATERIALS
Product Number
Brand
Product Description

Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., fuming, ≥37%, APHA: ≤10
Sigma-Aldrich
Hydrogen chloride solution, 2.0 M in diethyl ether
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Glycine, SAJ special grade, ≥99.0%
Sigma-Aldrich
Hydrochloric acid solution, 0.02 M
Sigma-Aldrich
Hydrochloric acid solution, 0.01 M
Sigma-Aldrich
Hydrogen chloride – ethanol solution, 0.1 M in ethanol
Sigma-Aldrich
Hydrochloric acid solution, 12 M
Sigma-Aldrich
Hydrochloric acid solution, 0.5 M
Sigma-Aldrich
Hydrochloric acid solution, 0.2 M
Sigma-Aldrich
Hydrochloric acid solution, 0.05 M
Sigma-Aldrich
Hydrochloric acid solution, 6 M
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Hydrochloric acid, SAJ first grade, 35.0-37.0%
Sigma-Aldrich
Phosphoric acid solution, 85 wt. % in H2O, FCC, FG
Sigma-Aldrich
Phosphoric acid solution, suitable for NMR (reference standard), 85% in D2O (99.9 atom % D), NMR tube size 4.2 mm × 8 in. , WGS-5BL Coaxial NMR tube
Sigma-Aldrich
Phosphoric acid solution, suitable for NMR (reference standard), 85% in D2O (99.9 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Phosphoric acid solution, suitable for NMR (reference standard), 85% in D2O (99.9 atom % D), NMR tube size 5 mm × 8 in.
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Aphidicolin from Nigrospora sphaerica, ≥98% (HPLC), powder
Sigma-Aldrich
Bicinchoninic acid disodium salt hydrate, ≥98% (HPLC)
Sigma-Aldrich
Natriuretic Peptide, C-Type, ≥95% (HPLC)
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), derivatization grade (GC derivatization), LiChropur
SAFC
Glycine
Sigma-Aldrich
Glycine, ACS reagent, ≥98.5%
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), derivatization grade (GC derivatization), LiChropur
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, derivatization grade (GC derivatization), LiChropur
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)