コンテンツへスキップ
Merck
  • Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases.

Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases.

The British journal of nutrition (2015-04-29)
Elisabeth Christiansen, Kenneth R Watterson, Claire J Stocker, Elena Sokol, Laura Jenkins, Katharina Simon, Manuel Grundmann, Rasmus K Petersen, Edward T Wargent, Brian D Hudson, Evi Kostenis, Christer S Ejsing, Michael A Cawthorne, Graeme Milligan, Trond Ulven
要旨

Various foods are associated with effects against metabolic diseases such as insulin resistance and type 2 diabetes; however, their mechanisms of action are mostly unclear. Fatty acids may contribute by acting as precursors of signalling molecules or by direct activity on receptors. The medium- and long-chain NEFA receptor FFA1 (free fatty acid receptor 1, previously known as GPR40) has been linked to enhancement of glucose-stimulated insulin secretion, whereas FFA4 (free fatty acid receptor 4, previously known as GPR120) has been associated with insulin-sensitising and anti-inflammatory effects, and both receptors are reported to protect pancreatic islets and promote secretion of appetite and glucose-regulating hormones. Hypothesising that FFA1 and FFA4 mediate therapeutic effects of dietary components, we screened a broad selection of NEFA on FFA1 and FFA4 and characterised active compounds in concentration-response curves. Of the screened compounds, pinolenic acid, a constituent of pine nut oil, was identified as a relatively potent and efficacious dual FFA1/FFA4 agonist, and its suitability for further studies was confirmed by additional in vitro characterisation. Pine nut oil and free and esterified pure pinolenic acid were tested in an acute glucose tolerance test in mice. Pine nut oil showed a moderately but significantly improved glucose tolerance compared with maize oil. Pure pinolenic acid or ethyl ester gave robust and highly significant improvements of glucose tolerance. In conclusion, the present results indicate that pinolenic acid is a comparatively potent and efficacious dual FFA1/FFA4 agonist that exerts antidiabetic effects in an acute mouse model. The compound thus deserves attention as a potential active dietary ingredient to prevent or counteract metabolic diseases.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
ジメチルスルホキシド, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
ジメチルスルホキシド, for molecular biology
Sigma-Aldrich
ジメチルスルホキシド, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
D-(+)-グルコース, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-グルコース, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
ジメチルスルホキシド, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
デキストロース, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D-(+)-グルコース, ≥99.5% (GC), BioXtra
Sigma-Aldrich
ジメチルスルホキシド, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-グルコース, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
酢酸, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
ジメチルスルホキシド, PCR Reagent
Sigma-Aldrich
酢酸, ≥99.5%, FCC, FG
Sigma-Aldrich
酢酸, natural, ≥99.5%, FG
Sigma-Aldrich
5α-アンドロスタン-17β-オール-3-オン, ≥97.5%
Sigma-Aldrich
酢酸, ≥99.7%
Sigma-Aldrich
ジメチルスルホキシド, anhydrous, ≥99.9%
Sigma-Aldrich
酢酸, JIS special grade, ≥99.7%
Sigma-Aldrich
D-(+)-グルコース, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
ヘキサン, JIS special grade, ≥96.0%
Sigma-Aldrich
ヘキサン, anhydrous, 95%
Sigma-Aldrich
5α-アンドロスタン-17β-オール-3-オン, purum, ≥99.0% (TLC)
Sigma-Aldrich
D-(+)-グルコース, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
酢酸, SAJ first grade, ≥99.0%
Sigma-Aldrich
酢酸 溶液, 1 M, 1 N
Sigma-Aldrich
D-(+)-グルコース, ACS reagent
Sigma-Aldrich
ヘキサン, SAJ first grade, ≥95.0%
Sigma-Aldrich
D-(+)-グルコース, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
酢酸, ≥99.7%, SAJ super special grade
Sigma-Aldrich
ヘキサン, suitable for HPLC